
explicit form of functions of the pa ramete r s ,  and the Dorodnitsyn var iables  (1) must be replaced by the "physi-  
caI,  variables  x and r. 

We note that the theoret ical  analysis  of s imi lar i ty  of flow of a viscous gas in pipes with heat exchange is 
analyzed theoretically,  e.g., in [4]. 

N O T A T I O N  

x, r, cylindrical  coordinates;  u, v, velocity components;  Pw, Pw, and Vw, p res su re ,  density, and kinematic 
ro(x) q~ 

coefficient of v iscosi ty  for tempera ture  of the wail; ~'= v'H-1 ~- ~ x  u; A = H - a d / ;  r =  Hdq~; Q = n tdr  I = Qo 
. , �9 2 ~ 9 w  , 

o o o 

Q0, constant flow rate of the gas. 
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CALCULATION OF THE LAMINAR FLOW 

OF AN INCOMPRESSIBLE LIQUID AROUND A DISC 

AND A CYLINDER 

I. A. Belov and N. A. Kudryavtsev UDC 532.517.2 

We study the c i rcu la r  flow of a viscous incompress ib le  liquid around a disc and a cylinder,  in 
the range of Reynolds numbers 40 -< Re -< 1000. 

The aim of the present  work is to obtain stable and sufficiently accura te  numer ica l  solutions for the flow 
near  a disc and a cylinder. The bodies a re  i m m e r s e d  in a c i r cu la r  flow of a viscous incompress ib le  liquid, with 
a zero  angle of incidence. This type of information is essent ia l  since, in the construct ion of models of flow of 
a liquid which contains solid par t ic les ,  one usually uses the data about the action of the liquid on an individual 
par t ic le  [1]. The solution is based on the difference approximation of the Nav ie r -S tokes  equations according to 
a scheme used in [2]. There  are a n u m b e r o f f e a t u r e s  of the scheme that make it useful for the study of the flow 
considered here,  which is charac ter ized  by the presence  of developed circulat ion zones. These features are:  
the use of velocity components and p r e s s u r e  cor rec t ion  as the bas ic  independent var iables ,  the displacement  of 
the grid for velocity components, the combination of uni lateral  and central  difference in the approximation of 
convection t e rms  (hybrid scheme). The solution is l imited to the region of Reynolds numbers  constructed f rom 
the unperturbed flow and f romthe  d iamete r  of the disc  or  cylinder, i.e., 40 <- Re -< 1000. Possible effects of 
three-dimensional i ty  of the flow were not considered. 

In a cyl indrical  coordinate sy s t em (x, r), the equation for the change of momentum and the continuity 
equation can be writ ten in the fo rm 

T 
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TABLE 1. Dependence  of the R e s i s t a n c e  Coef-  

f i c ien t s  on Re 

L Re Cxp Cx] Cxd 

0 (disc) 

1,5 

40 
t00 
250 
500 

1000 
40 

100 
250 
500 

1009 
40 

100 
250 
500 

1000 
40 

100 
250 
500 

1000 

1,85 
1,36 
1,08 
1,03 
1,02 
1.41 
1,08 
0,950 
O, 899 
0,913 
1,38 
1,05 
0,934 
O, 882 
O, 890 
1,36 
1,03 
O, 929 
0~875 
O, 883 

m 

0,891 
0.368 
0,098 
0 

--0,058 
1,17 
0.502 
0,168 
0,037 

--0,042 
1,41 
0,629 
0,235 
0,068 

--0,026 

0,800 
0,476 
0,209 
0,144 
0,091 
0,354 
0,235 
0,156 
0,115 

0,093 
O, 294 
O, 209 
0,135 
0,103 
0,081 
O, 266 
O, 194 
0,122 
0,098 
0,080 

/ 

0,05 

a 1 ~  o,o! 

J 

-q ooz -o,004 

d?--o,2 

-qoo~ -o, oo7 -o, ol 

-qooo -qof -qole 

Fig.  1. L ines  of cons t an t  va lues  of the flow funct ion  r for  a c y l i n d e r  of 
length  L = I ,  fo r  Reynolds  n u m b e r s  Re =40 (a), 200 (b), 250 (c), and 500 
(d). 

In the equa t ion  for  m o m e n t u m ,  f r e p l a c e s  u o r  v. In  th is  case  F u = F v = l / R e ;  S u = - 3  P / 0 x ;  and S v = -v / ( r2Re)  - 
0 P / 0 r .  In the  con t inu i ty  equa t ion  f = l ;  and F f = S f = 0 .  

In the d i f f e r ence  a p p r o x i m a t i o n  of Eqs.  (1), a r e c t a n g u l a r  g r id  is  c ons t r uc t e d  in  such a way that  the 
b o u n d a r i e s  of the r e g i o n  of c a l cu l a t i on  which i n c l u d e s  the s u r f a c e  of the body and the s y m m e t r y  ax is  pass  
be tween  coord ina te  l ines .  The i n t e r s e c t i o n s  of the coord ina te  l ines  of the gr id  f o r m  " p r i nc i pa l "  s i t e s  where  
one ca l cu l a t e s  the p r e s s u r e  and p r e s s u r e  c o r r e c t i o n .  The p r e s s u r e  c o r r e c t i o n  is  t aken  as the p r i n c i p a l  

201 



variable,  and is defined as the difference of p r e s su re s  at two consecutive computational steps. The sites where 
one calculates the velocity components are  positioned midway between the principal  s i tes;  the s i tes  with the 
axial velocity u are  displaced in the axial direction, and the sites with the radial  veloci ty  v in the radial  d i rec -  
tion. The finite-difference equations are obtained by integrat ing Eq. (1) over control  volumes associated with 
the sites in which one calculates the p re s su re  cor rec t ion  and velocity components. In the calculation of flows 
through the sides of the control volumes, we used the so-cal led hybrid scheme, according to which the difference 
approximation depends on the Pecl~t number  of the grid for the side of the control  volume under  investigation. 
If [Pe[ < 2, one applies central  differences,  for convective t e rms ,  and diffusion t e rms  a re  retained;  if [Pe] -> 2, one 
applies differences against  the flow for convective t e rms ,  and diffusive t e r m s  a re  omitted.  This approach en-  
sures  the stability of the numerical  procedure ,  as the application of central  differences for [Pe[ >- 2 leads to the 
resu l t  that the Courant i terat ion number becomes l a rge r  than unity, and the solution becomes  unstable. 

Thus, for some site 0 we have the f ini te-difference equation 
4 

AoTo = ~ Aif~ + B0, (2) 
i=1  

where f~u, v, p, and the summation is carried out over the four nearest neighbors of O. 

After the determination of the pressure correction, one calculates the pressure and the more accurate 

values of the velocity components: 

P0 = Po* + Pc, (3) 

fo = f~  - -  CoAp, (4) 

where f -=u, v; ~p is the difference of values of p at two principal  sites neighboring with the site at which one 
improves  the accuracy  of corresponding velocity component. The derivat ion of Eqs. (2)-(4) is d iscussed in 
more detail in [21. 

Let us consider  the boundary conditions. At the s y m m e t r y  axis we take v = a u/0 r = 0 P / a  r = 0 p / O  r =0.  

At the surface of the body we use the condition of adhesion of the liquid, i.e., u =v=0 .  The condition of 
vanishing component of velocity normal  to the body is specified d i rec t ly  in the calculation. The equality to zero  
of the tangential component is achieved by a method usual in numerical  calculations, by introducing velocity at 
a fictitious site inside the body. In addition, at the surface of the body we specify that the normal  gradient of p 
is equal to zero  (this follows f rom (4)), 

At the external  front (with respec t  to the s t ream) and upper boundaries of the region of calculations we 
specify conditions in the unperturbed flow: u = l  and v =1 ) =p =0. At external  r e a r  boundary we specify , sof t"  
conditions for the axial velocity component, and conditions in the unperturbed flow for the remaining var iables :  
O u / O x = v = P = p = O .  

The initial state of the flow in a large par t  of the region of calculation for Re =40 is defined using the 
conditions in the unperturbed flow (u =1), and onlyin the wake of the body, we use the condition of res t  (u =0). 
At large Reynolds numbers,  the initial conditions were the resul ts  of solution of the previous var iant  with 
respect  to Re. 

The computational a lgor i thm consists  of a sequence of operations (the external  i tera t ion cycle): 

1) Fo r  given initial conditions, one solves Eq. (2) for f=u,  v. 

2) One finds the i terat ion solution of Eq. (2) for f=p  in such a way that the difference of p at two consecu-  
tive i terat ions is sma l l e r  than a given quantity (the internal  i terat ion cycle). 

3) One determines  the p r e s s u r e  and more accura te  values of veloci ty components f rom (3) and (4). 

4) New values are  used for the s tar t ing var iables  and the procedure  is repeated. 

The cr i ter ion of convergence of the external  i terat ion cycle was chosen to be the condition of constant, with 
a given accuracy,  res is tance  coefficient to the motion of the body. In the calculations, we a lso  controlled the 
condition of mass conservat ion at the ver t ica l  lines of the grid to avoid unphysical solutions. 

As is known, the accuracy  and convergence of the calculation are  determined by them ethod of solution of 
the sys tem of equations (2). In the present  calculation, we used the driving method "which was constructed using 
the algori thm for invers ion of a t r idiagonal  matrix. Following the example of the matr ix used in [3] we assume 
that the only unknowns in (2) are  the values of the variable f at the ver t ica l  line of the grid under consideration. 
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The values of the var iable  at the neighboring ver t ica l  lines are  assumed known f rom the previous i terat ion 

step. Equation (2) can then be rewri t ten  in the form 

f j  = A j f j §  -}- Bjh.~ , + Cj ,  

where f ~ u ,  v, p; j = 2 ,  3, . . . ,  n - 1 .  

To calculate the var iables ,  the last  equation will be used in the form 

h = ash.i  § b j, (5) 

w h e r e a - = A . T . ;  bj=(Bjbj I + C j ) T ] ;  T j = l / ( 1 - B j a j _ l ) ; a  2=A2; b 2=B2f 1+C 2. We note that Eq. (5) for f=u,  v i s  J J 3 
so lved using the method of lower  relaxation, to ensure  the convergence of the computational method. 

The calculation is ca r r i ed  out for a disc of length L = 0  and for a cylinder of lengths L =1, 1.5, and 2 
(here and below, the d iamete r  of the disc  or  cylinder is taken as the unit of length) for  Reynolds numbers  Re = 
40, 100, 250, 500, and 1000. We used the following constant pa rame te r s  of calculation: the coefficient of 
lower relaxation in (5) if=u, v) equal to 0.3; the accuracy  of determinat ion of the p r e s s u r e  correc t ion equal to 
0.01; the accuracy  of solution of the problem determined f rom the change of the res is tance  coefficient per  
i terat ion step of the external  cycle equal to 0.001; and the minimum steps of the grid in axial and radial  d i r ec -  
tions which were 0.01 and 0.02, respectively.  The distance f rom the surface of the body to the front, upper, and 
r e a r  external  boundaries of the calculation region was taken as 7, 6, and 12 units. The maximum size of the 
grid 72 • 25. The grid is nonuniform, and is constructed in such a way that the rat io of two neighboring steps 
in x and r direct ions does not exceed 1.5. The calculation of one var iant  on the computer  ES-1050 was ~30 min 
for  Re =40. As Re increased,  a considerably shor t e r  machine t ime was required (on the o rde r  of 10-15 min for 
Re =1000). The maximum number  of i terat ions  steps in the external  i terat ion cycle var ied f rom 200 to 400. 
The number  of i tera t ions  for  determinat ion of the p r e s s u r e  cor rec t ion  (inner cycle) decreased  with increas ing  
Re. However, it remained  pract ica l ly  constant within one variant  for  Re = const. 

Table 1 shows the dependence of the res i s tance  coefficients of p r e s s u r e  C• frict ion Cxf , and of the bot-  
tom Cxd (obtained in the usual way by dividing the total p r e s su re  and frict ion forces  by the velocity thrust  of the 
re]perturbed flow, and by the area  of the middle section of the body) on the Reynolds number Re. It is seen f rom 
Table 1 that, within the limits of cyl inder  lengths considered here,  Cxp depends weakly on L for all Reynolds 
numbers  used in the calculation. The p r e s s u r e  res is tance  of the disc exceeds the p re s su re  res is tance  of the 
cyl inder  due to the considerably large rarefact ion in the wake of the disc, as well as to the increased p res su re  
on its front side. It is in teres t ing to note that the res is tance  coefficient of friction of the cylinder, s tar t ing 
f rom some value of the Reynolds number, becomes negative whichindicates flow separat ion at its side surface.  
Naturally, this e f fee t i s  more  pronounced for sho r t e r  cylinders.  An important  charac te r i s t i c  is the bottom 
res is tance  coefficient which is a lso given in Table 1. We note that, for a constant Reynolds number, Cxd attains 
its maximum value for the disc. For  long cylinders (of the o rder  of 1.5-2), Cxd tends to a number constant for  
each Re. For  these cyl inder  lengths, the bottom res i s tance  consists of a fract ion of the total res is tance of 
p r e s s u r e  of the cyl inder  which var ies  f rom 19% for Re =40 to 9% for Re =1000. 

Figure 1 shows the lines of constant values of the flow function ~ for a cylinder of length L = I  for Re =40, 
100, 250, and 500. Figure  2 gives the same quantity for a disc and cylinders of lengths considered here,  for Re = 
1000 (the f igures were constructed on the graph plot ter  ES-7054). It follows f rom Figs.  1 and 2 that the intensity 
of the circulat ion zone in the wake of the body is sma l l e r  for  longer bodies at identical Reynolds numbers,  and 
inc reases  with increas ing  Re. The flow separat ion on the side surface of the cylinder s ta r t s  for all lengths con- 
s idered here  a l ready at Re=250,  andthe separat ion point is not at the front edge of the cylinder, but is displaced 
fur ther  downstream. Closing of the circulat ion zones in the wake of the cyl inder  and at its side surface into a 
single zone takes place for  Re =1000 only for  the cylinder of length L = I .  Finally, Fig. 3 gives the compar ison 
of the resul ts  calculated in the present  work with those given in [4]. It gives the distr ibution of p r e s su re  Pw 
(relative to twice the velocity thrust  of the unperturbed flow) at the surface of the cylinder of length L = 1.5 for 
Reynolds numbers  40 and 100. F r o m  the analysis  of the resul ts  one can reach the conclusion that, although the 
charac te r  of the p re s su re  distr ibution at the surface of the cylinder is s imi l a r  in both cases,  the resul ts  of the 
present  work are  preferable .  The s t rong smoothing out of the curves of the p ressu re  distribution in the neigh- 
borhood of the angular  edges of the cylinder obtained in [4] is c lear ly a consequence of the insufficient con- 
servat ivi ty  of the splitting method used in [4]. 

NOTATION 

x, r, axial and radial  coordinates;  u, v, axial and radial  velocity components; P, p r e s su re ;  p, cor rec t ion  
to p r e s s u r e ;  f, dependent var iable;  r flow function; Re, Reynolds number;  Pe, Peclet  number;  L, length of the 
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Fig .  2. L i n e s  of  c o n s t a n t  v a l u e s  of the  f low func t ion  r fo r  a d i s c  
of l eng th  L = 0 (a) and  a c y l i n d e r  of  l ength  L = 1 (b), 1.5 (c), 2 (d) 
for  Re = 1000. 
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Fig .  3. P r e s s u r e  d i s t r i b u t i o n  Pw a t  the  s u r f a c e  
of  the  c y l i n d e r  of  l eng th  L = 1.5 fo r  R e y n o l d s  
n u m b e r s  40 ( cu rve s  1 and 3) and  1000 ( c u rve s  2 
and 4). C u r v e s  1 and 2 a r e  the  r e s u l t s  of  the  
p r e s e n t  work ,  and c u r v e s  3 and 4 a r e  the  r e s u l t s  
of  the  c a l c u l a t i o n  of  [4] by  the  s p l i t t i n g  method .  
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cylinder; F f, exchange coefficient; Sf, source term; Cxp , Cxf, and Cxd , pressure, friction, and bottom resistance 
coefficients; n, number of nodes onthe vertical grid line; and A, B, C, a, b, coefficients in the finite-difference 
equations. The asterisk denotes the value of the variable at the previous step of the calculation, the subscript 
w denotes the value at the wall, and subscripts i, j, and 0 denote the grid nodes. 

1, 

2. 

3. 

4. 

LITERATURE CITED 

J. Chappel and G. Brenner, Hydrodynamics at Small Reynolds Numbers [Russian translation], Mir, Mos- 
cow (1976). 
D. G. Lilli, ,A simple method of calculation of velocities and pressure in strongly eddying flows,~ 
Raketn. Tekh. Kosmn., 14, 57-67 (1976). 
S. V. Patankar and D. B. Spolding, Heat and Mass Exchange in Boundary Layers [Russian translation], 
I~nergiya, Moscow (1971). 
V. A. GushchinandV. V. Shchennikov, in: Direct Numerical Modeling of Gas Flow (Numerical Experiment 
in Gas Dynamics) [in Russian], Computing Center, Academy of Sciences of the USSR, Moscow (1978), pp. 
114-133. 

205 


